Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

PROPER(U71(X1, X2)) → PROPER(X1)
U711(mark(X1), X2) → U711(X1, X2)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U21(tt, V1, V2)) → ISLIST(V1)
PROPER(U52(X1, X2)) → U521(proper(X1), proper(X2))
ACTIVE(U42(tt, V2)) → ISNELIST(V2)
PROPER(isQid(X)) → ISQID(proper(X))
PROPER(U11(X1, X2)) → U111(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(isNePal(X)) → PROPER(X)
ACTIVE(isList(V)) → ISPALLISTKIND(V)
ACTIVE(isNePal(V)) → U611(isPalListKind(V), V)
ISNEPAL(ok(X)) → ISNEPAL(X)
ACTIVE(U52(tt, V2)) → ISLIST(V2)
PROPER(U72(X)) → U721(proper(X))
U311(mark(X1), X2) → U311(X1, X2)
U321(ok(X)) → U321(X)
PROPER(U11(X1, X2)) → PROPER(X2)
ACTIVE(isList(__(V1, V2))) → ISPALLISTKIND(V1)
PROPER(isPalListKind(X)) → PROPER(X)
ACTIVE(isNePal(V)) → ISPALLISTKIND(V)
PROPER(U53(X)) → PROPER(X)
ACTIVE(U42(tt, V2)) → U431(isNeList(V2))
__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)
PROPER(U22(X1, X2)) → U221(proper(X1), proper(X2))
ACTIVE(isPal(V)) → ISPALLISTKIND(V)
ACTIVE(U71(X1, X2)) → U711(active(X1), X2)
ACTIVE(isList(__(V1, V2))) → AND(isPalListKind(V1), isPalListKind(V2))
PROPER(U41(X1, X2, X3)) → U411(proper(X1), proper(X2), proper(X3))
U121(ok(X)) → U121(X)
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
U431(ok(X)) → U431(X)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
ACTIVE(U41(X1, X2, X3)) → U411(active(X1), X2, X3)
ACTIVE(U61(tt, V)) → ISQID(V)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U721(mark(X)) → U721(X)
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isQid(I), isPalListKind(I))
PROPER(and(X1, X2)) → PROPER(X1)
ACTIVE(isNeList(V)) → U311(isPalListKind(V), V)
ACTIVE(U43(X)) → U431(active(X))
PROPER(U62(X)) → U621(proper(X))
ACTIVE(U72(X)) → U721(active(X))
PROPER(U42(X1, X2)) → PROPER(X1)
ACTIVE(isPal(V)) → U711(isPalListKind(V), V)
ACTIVE(isPalListKind(__(V1, V2))) → AND(isPalListKind(V1), isPalListKind(V2))
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
ACTIVE(isNeList(__(V1, V2))) → U411(and(isPalListKind(V1), isPalListKind(V2)), V1, V2)
U121(mark(X)) → U121(X)
U231(mark(X)) → U231(X)
U621(ok(X)) → U621(X)
ISPAL(ok(X)) → ISPAL(X)
PROPER(U42(X1, X2)) → PROPER(X2)
U431(mark(X)) → U431(X)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → PROPER(X)
PROPER(isPalListKind(X)) → ISPALLISTKIND(proper(X))
U531(ok(X)) → U531(X)
ACTIVE(U62(X)) → ACTIVE(X)
ACTIVE(isNeList(__(V1, V2))) → ISPALLISTKIND(V2)
ACTIVE(isPalListKind(__(V1, V2))) → ISPALLISTKIND(V2)
ACTIVE(U51(tt, V1, V2)) → ISNELIST(V1)
ACTIVE(U31(tt, V)) → ISQID(V)
PROPER(U61(X1, X2)) → U611(proper(X1), proper(X2))
ACTIVE(U72(X)) → ACTIVE(X)
U111(ok(X1), ok(X2)) → U111(X1, X2)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(isList(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
AND(ok(X1), ok(X2)) → AND(X1, X2)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
ISPALLISTKIND(ok(X)) → ISPALLISTKIND(X)
PROPER(U42(X1, X2)) → U421(proper(X1), proper(X2))
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U31(tt, V)) → U321(isQid(V))
U611(mark(X1), X2) → U611(X1, X2)
TOP(ok(X)) → TOP(active(X))
ACTIVE(U32(X)) → U321(active(X))
U521(ok(X1), ok(X2)) → U521(X1, X2)
PROPER(isNeList(X)) → PROPER(X)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ISQID(ok(X)) → ISQID(X)
__1(X1, mark(X2)) → __1(X1, X2)
ACTIVE(U11(tt, V)) → U121(isNeList(V))
ACTIVE(U21(tt, V1, V2)) → U221(isList(V1), V2)
ACTIVE(isNeList(__(V1, V2))) → AND(isPalListKind(V1), isPalListKind(V2))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
PROPER(isNeList(X)) → ISNELIST(proper(X))
ACTIVE(isNePal(__(I, __(P, I)))) → AND(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
PROPER(U11(X1, X2)) → PROPER(X1)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(tt, V1, V2)) → ISLIST(V1)
ACTIVE(U53(X)) → ACTIVE(X)
U221(ok(X1), ok(X2)) → U221(X1, X2)
ACTIVE(U52(X1, X2)) → U521(active(X1), X2)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
PROPER(isQid(X)) → PROPER(X)
ACTIVE(isNeList(__(V1, V2))) → ISPALLISTKIND(V1)
ACTIVE(U53(X)) → U531(active(X))
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(isNeList(V)) → ISPALLISTKIND(V)
PROPER(U32(X)) → U321(proper(X))
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
PROPER(U62(X)) → PROPER(X)
ACTIVE(isList(__(V1, V2))) → U211(and(isPalListKind(V1), isPalListKind(V2)), V1, V2)
U321(mark(X)) → U321(X)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
U611(ok(X1), ok(X2)) → U611(X1, X2)
ACTIVE(U61(X1, X2)) → U611(active(X1), X2)
ACTIVE(U21(X1, X2, X3)) → U211(active(X1), X2, X3)
ACTIVE(U12(X)) → U121(active(X))
TOP(mark(X)) → PROPER(X)
PROPER(__(X1, X2)) → PROPER(X2)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(U41(tt, V1, V2)) → U421(isList(V1), V2)
PROPER(U23(X)) → U231(proper(X))
U231(ok(X)) → U231(X)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
ACTIVE(isNePal(__(I, __(P, I)))) → ISPALLISTKIND(I)
ISLIST(ok(X)) → ISLIST(X)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
PROPER(U43(X)) → PROPER(X)
AND(mark(X1), X2) → AND(X1, X2)
U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U721(ok(X)) → U721(X)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
U531(mark(X)) → U531(X)
ACTIVE(isNePal(__(I, __(P, I)))) → ISPAL(P)
ACTIVE(U12(X)) → ACTIVE(X)
PROPER(U12(X)) → U121(proper(X))
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U421(mark(X1), X2) → U421(X1, X2)
ACTIVE(isNePal(__(I, __(P, I)))) → ISPALLISTKIND(P)
U421(ok(X1), ok(X2)) → U421(X1, X2)
PROPER(U53(X)) → U531(proper(X))
PROPER(__(X1, X2)) → PROPER(X1)
ACTIVE(U42(X1, X2)) → U421(active(X1), X2)
ACTIVE(isList(__(V1, V2))) → ISPALLISTKIND(V2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
ACTIVE(U43(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U62(X)) → U621(active(X))
ACTIVE(U22(X1, X2)) → U221(active(X1), X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → U231(active(X))
PROPER(U21(X1, X2, X3)) → PROPER(X3)
ISNELIST(ok(X)) → ISNELIST(X)
ACTIVE(U22(tt, V2)) → ISLIST(V2)
PROPER(U71(X1, X2)) → U711(proper(X1), proper(X2))
ACTIVE(U61(tt, V)) → U621(isQid(V))
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isPal(P), isPalListKind(P))
PROPER(and(X1, X2)) → PROPER(X2)
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
ACTIVE(U11(tt, V)) → ISNELIST(V)
PROPER(U52(X1, X2)) → PROPER(X2)
ACTIVE(U71(tt, V)) → ISNEPAL(V)
U111(mark(X1), X2) → U111(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(isPal(X)) → ISPAL(proper(X))
PROPER(U51(X1, X2, X3)) → PROPER(X1)
ACTIVE(U71(tt, V)) → U721(isNePal(V))
PROPER(U12(X)) → PROPER(X)
ACTIVE(U52(tt, V2)) → U531(isList(V2))
ACTIVE(U51(X1, X2, X3)) → U511(active(X1), X2, X3)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(isPalListKind(__(V1, V2))) → ISPALLISTKIND(V1)
U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
U621(mark(X)) → U621(X)
PROPER(U21(X1, X2, X3)) → U211(proper(X1), proper(X2), proper(X3))
ACTIVE(U11(X1, X2)) → U111(active(X1), X2)
PROPER(U61(X1, X2)) → PROPER(X1)
ACTIVE(U23(X)) → ACTIVE(X)
U521(mark(X1), X2) → U521(X1, X2)
PROPER(U32(X)) → PROPER(X)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
ACTIVE(U22(tt, V2)) → U231(isList(V2))
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U43(X)) → U431(proper(X))
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(isNeList(__(V1, V2))) → U511(and(isPalListKind(V1), isPalListKind(V2)), V1, V2)
ACTIVE(isList(V)) → U111(isPalListKind(V), V)
TOP(mark(X)) → TOP(proper(X))
PROPER(U51(X1, X2, X3)) → U511(proper(X1), proper(X2), proper(X3))
ACTIVE(U51(tt, V1, V2)) → U521(isNeList(V1), V2)
PROPER(isList(X)) → ISLIST(proper(X))
ACTIVE(__(X1, X2)) → __1(X1, active(X2))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PROPER(U71(X1, X2)) → PROPER(X1)
U711(mark(X1), X2) → U711(X1, X2)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U21(tt, V1, V2)) → ISLIST(V1)
PROPER(U52(X1, X2)) → U521(proper(X1), proper(X2))
ACTIVE(U42(tt, V2)) → ISNELIST(V2)
PROPER(isQid(X)) → ISQID(proper(X))
PROPER(U11(X1, X2)) → U111(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(isNePal(X)) → PROPER(X)
ACTIVE(isList(V)) → ISPALLISTKIND(V)
ACTIVE(isNePal(V)) → U611(isPalListKind(V), V)
ISNEPAL(ok(X)) → ISNEPAL(X)
ACTIVE(U52(tt, V2)) → ISLIST(V2)
PROPER(U72(X)) → U721(proper(X))
U311(mark(X1), X2) → U311(X1, X2)
U321(ok(X)) → U321(X)
PROPER(U11(X1, X2)) → PROPER(X2)
ACTIVE(isList(__(V1, V2))) → ISPALLISTKIND(V1)
PROPER(isPalListKind(X)) → PROPER(X)
ACTIVE(isNePal(V)) → ISPALLISTKIND(V)
PROPER(U53(X)) → PROPER(X)
ACTIVE(U42(tt, V2)) → U431(isNeList(V2))
__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)
PROPER(U22(X1, X2)) → U221(proper(X1), proper(X2))
ACTIVE(isPal(V)) → ISPALLISTKIND(V)
ACTIVE(U71(X1, X2)) → U711(active(X1), X2)
ACTIVE(isList(__(V1, V2))) → AND(isPalListKind(V1), isPalListKind(V2))
PROPER(U41(X1, X2, X3)) → U411(proper(X1), proper(X2), proper(X3))
U121(ok(X)) → U121(X)
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
U431(ok(X)) → U431(X)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
ACTIVE(U41(X1, X2, X3)) → U411(active(X1), X2, X3)
ACTIVE(U61(tt, V)) → ISQID(V)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U721(mark(X)) → U721(X)
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isQid(I), isPalListKind(I))
PROPER(and(X1, X2)) → PROPER(X1)
ACTIVE(isNeList(V)) → U311(isPalListKind(V), V)
ACTIVE(U43(X)) → U431(active(X))
PROPER(U62(X)) → U621(proper(X))
ACTIVE(U72(X)) → U721(active(X))
PROPER(U42(X1, X2)) → PROPER(X1)
ACTIVE(isPal(V)) → U711(isPalListKind(V), V)
ACTIVE(isPalListKind(__(V1, V2))) → AND(isPalListKind(V1), isPalListKind(V2))
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
ACTIVE(isNeList(__(V1, V2))) → U411(and(isPalListKind(V1), isPalListKind(V2)), V1, V2)
U121(mark(X)) → U121(X)
U231(mark(X)) → U231(X)
U621(ok(X)) → U621(X)
ISPAL(ok(X)) → ISPAL(X)
PROPER(U42(X1, X2)) → PROPER(X2)
U431(mark(X)) → U431(X)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → PROPER(X)
PROPER(isPalListKind(X)) → ISPALLISTKIND(proper(X))
U531(ok(X)) → U531(X)
ACTIVE(U62(X)) → ACTIVE(X)
ACTIVE(isNeList(__(V1, V2))) → ISPALLISTKIND(V2)
ACTIVE(isPalListKind(__(V1, V2))) → ISPALLISTKIND(V2)
ACTIVE(U51(tt, V1, V2)) → ISNELIST(V1)
ACTIVE(U31(tt, V)) → ISQID(V)
PROPER(U61(X1, X2)) → U611(proper(X1), proper(X2))
ACTIVE(U72(X)) → ACTIVE(X)
U111(ok(X1), ok(X2)) → U111(X1, X2)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(isList(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
AND(ok(X1), ok(X2)) → AND(X1, X2)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
ISPALLISTKIND(ok(X)) → ISPALLISTKIND(X)
PROPER(U42(X1, X2)) → U421(proper(X1), proper(X2))
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U31(tt, V)) → U321(isQid(V))
U611(mark(X1), X2) → U611(X1, X2)
TOP(ok(X)) → TOP(active(X))
ACTIVE(U32(X)) → U321(active(X))
U521(ok(X1), ok(X2)) → U521(X1, X2)
PROPER(isNeList(X)) → PROPER(X)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ISQID(ok(X)) → ISQID(X)
__1(X1, mark(X2)) → __1(X1, X2)
ACTIVE(U11(tt, V)) → U121(isNeList(V))
ACTIVE(U21(tt, V1, V2)) → U221(isList(V1), V2)
ACTIVE(isNeList(__(V1, V2))) → AND(isPalListKind(V1), isPalListKind(V2))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
PROPER(isNeList(X)) → ISNELIST(proper(X))
ACTIVE(isNePal(__(I, __(P, I)))) → AND(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
PROPER(U11(X1, X2)) → PROPER(X1)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(tt, V1, V2)) → ISLIST(V1)
ACTIVE(U53(X)) → ACTIVE(X)
U221(ok(X1), ok(X2)) → U221(X1, X2)
ACTIVE(U52(X1, X2)) → U521(active(X1), X2)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
PROPER(isQid(X)) → PROPER(X)
ACTIVE(isNeList(__(V1, V2))) → ISPALLISTKIND(V1)
ACTIVE(U53(X)) → U531(active(X))
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(isNeList(V)) → ISPALLISTKIND(V)
PROPER(U32(X)) → U321(proper(X))
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
PROPER(U62(X)) → PROPER(X)
ACTIVE(isList(__(V1, V2))) → U211(and(isPalListKind(V1), isPalListKind(V2)), V1, V2)
U321(mark(X)) → U321(X)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
U611(ok(X1), ok(X2)) → U611(X1, X2)
ACTIVE(U61(X1, X2)) → U611(active(X1), X2)
ACTIVE(U21(X1, X2, X3)) → U211(active(X1), X2, X3)
ACTIVE(U12(X)) → U121(active(X))
TOP(mark(X)) → PROPER(X)
PROPER(__(X1, X2)) → PROPER(X2)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(U41(tt, V1, V2)) → U421(isList(V1), V2)
PROPER(U23(X)) → U231(proper(X))
U231(ok(X)) → U231(X)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
ACTIVE(isNePal(__(I, __(P, I)))) → ISPALLISTKIND(I)
ISLIST(ok(X)) → ISLIST(X)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
PROPER(U43(X)) → PROPER(X)
AND(mark(X1), X2) → AND(X1, X2)
U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U721(ok(X)) → U721(X)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
U531(mark(X)) → U531(X)
ACTIVE(isNePal(__(I, __(P, I)))) → ISPAL(P)
ACTIVE(U12(X)) → ACTIVE(X)
PROPER(U12(X)) → U121(proper(X))
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U421(mark(X1), X2) → U421(X1, X2)
ACTIVE(isNePal(__(I, __(P, I)))) → ISPALLISTKIND(P)
U421(ok(X1), ok(X2)) → U421(X1, X2)
PROPER(U53(X)) → U531(proper(X))
PROPER(__(X1, X2)) → PROPER(X1)
ACTIVE(U42(X1, X2)) → U421(active(X1), X2)
ACTIVE(isList(__(V1, V2))) → ISPALLISTKIND(V2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
ACTIVE(U43(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U62(X)) → U621(active(X))
ACTIVE(U22(X1, X2)) → U221(active(X1), X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → U231(active(X))
PROPER(U21(X1, X2, X3)) → PROPER(X3)
ISNELIST(ok(X)) → ISNELIST(X)
ACTIVE(U22(tt, V2)) → ISLIST(V2)
PROPER(U71(X1, X2)) → U711(proper(X1), proper(X2))
ACTIVE(U61(tt, V)) → U621(isQid(V))
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isPal(P), isPalListKind(P))
PROPER(and(X1, X2)) → PROPER(X2)
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
ACTIVE(U11(tt, V)) → ISNELIST(V)
PROPER(U52(X1, X2)) → PROPER(X2)
ACTIVE(U71(tt, V)) → ISNEPAL(V)
U111(mark(X1), X2) → U111(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(isPal(X)) → ISPAL(proper(X))
PROPER(U51(X1, X2, X3)) → PROPER(X1)
ACTIVE(U71(tt, V)) → U721(isNePal(V))
PROPER(U12(X)) → PROPER(X)
ACTIVE(U52(tt, V2)) → U531(isList(V2))
ACTIVE(U51(X1, X2, X3)) → U511(active(X1), X2, X3)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(isPalListKind(__(V1, V2))) → ISPALLISTKIND(V1)
U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
U621(mark(X)) → U621(X)
PROPER(U21(X1, X2, X3)) → U211(proper(X1), proper(X2), proper(X3))
ACTIVE(U11(X1, X2)) → U111(active(X1), X2)
PROPER(U61(X1, X2)) → PROPER(X1)
ACTIVE(U23(X)) → ACTIVE(X)
U521(mark(X1), X2) → U521(X1, X2)
PROPER(U32(X)) → PROPER(X)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
ACTIVE(U22(tt, V2)) → U231(isList(V2))
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U43(X)) → U431(proper(X))
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(isNeList(__(V1, V2))) → U511(and(isPalListKind(V1), isPalListKind(V2)), V1, V2)
ACTIVE(isList(V)) → U111(isPalListKind(V), V)
TOP(mark(X)) → TOP(proper(X))
PROPER(U51(X1, X2, X3)) → U511(proper(X1), proper(X2), proper(X3))
ACTIVE(U51(tt, V1, V2)) → U521(isNeList(V1), V2)
PROPER(isList(X)) → ISLIST(proper(X))
ACTIVE(__(X1, X2)) → __1(X1, active(X2))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 28 SCCs with 96 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISPAL(ok(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISPAL(ok(X)) → ISPAL(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISPALLISTKIND(ok(X)) → ISPALLISTKIND(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISPALLISTKIND(ok(X)) → ISPALLISTKIND(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(ok(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(ok(X)) → ISNEPAL(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISQID(ok(X)) → ISQID(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISQID(ok(X)) → ISQID(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISLIST(ok(X)) → ISLIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISLIST(ok(X)) → ISLIST(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(ok(X)) → ISNELIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(ok(X)) → ISNELIST(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U721(ok(X)) → U721(X)
U721(mark(X)) → U721(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U721(ok(X)) → U721(X)
U721(mark(X)) → U721(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X)) → U621(X)
U621(ok(X)) → U621(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X)) → U621(X)
U621(ok(X)) → U621(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)
U611(ok(X1), ok(X2)) → U611(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)
U611(ok(X1), ok(X2)) → U611(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U531(mark(X)) → U531(X)
U531(ok(X)) → U531(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U531(mark(X)) → U531(X)
U531(ok(X)) → U531(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)
U521(ok(X1), ok(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)
U521(ok(X1), ok(X2)) → U521(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U431(mark(X)) → U431(X)
U431(ok(X)) → U431(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U431(ok(X)) → U431(X)
U431(mark(X)) → U431(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X1), X2) → U421(X1, X2)
U421(ok(X1), ok(X2)) → U421(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X1), X2) → U421(X1, X2)
U421(ok(X1), ok(X2)) → U421(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X)) → U321(X)
U321(mark(X)) → U321(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(ok(X1), ok(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(ok(X1), ok(X2)) → U311(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U231(ok(X)) → U231(X)
U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U231(ok(X)) → U231(X)
U231(mark(X)) → U231(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)
U221(ok(X1), ok(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)
U221(ok(X1), ok(X2)) → U221(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)
U121(ok(X)) → U121(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)
U121(ok(X)) → U121(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)
U111(ok(X1), ok(X2)) → U111(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(isPal(X)) → PROPER(X)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(U72(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U42(X1, X2)) → PROPER(X2)
PROPER(U12(X)) → PROPER(X)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(isQid(X)) → PROPER(X)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U32(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U43(X)) → PROPER(X)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
PROPER(isPalListKind(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(U62(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(U53(X)) → PROPER(X)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(isList(X)) → PROPER(X)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(U42(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(isPal(X)) → PROPER(X)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U72(X)) → PROPER(X)
PROPER(U42(X1, X2)) → PROPER(X2)
PROPER(U12(X)) → PROPER(X)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U32(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U43(X)) → PROPER(X)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isPalListKind(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X)) → PROPER(X)
PROPER(U53(X)) → PROPER(X)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(isList(X)) → PROPER(X)
PROPER(U42(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2)) → PROPER(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(U43(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X)) → ACTIVE(X)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(U53(X)) → ACTIVE(X)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(U62(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(U43(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X)) → ACTIVE(X)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(U53(X)) → ACTIVE(X)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X)) → ACTIVE(X)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(TOP(x1)) = 2·x1   
POL(U11(x1, x2)) = 2·x1 + 2·x2   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = 2·x1 + 2·x2 + x3   
POL(U22(x1, x2)) = x1 + x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1 + x2 + x3   
POL(U42(x1, x2)) = x1 + 2·x2   
POL(U43(x1)) = 2·x1   
POL(U51(x1, x2, x3)) = x1 + x2 + 2·x3   
POL(U52(x1, x2)) = x1 + 2·x2   
POL(U53(x1)) = 2·x1   
POL(U61(x1, x2)) = 2·x1 + 2·x2   
POL(U62(x1)) = 2·x1   
POL(U71(x1, x2)) = x1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = x1 + 2·x2   
POL(a) = 0   
POL(active(x1)) = 2·x1   
POL(and(x1, x2)) = x1 + 2·x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 2·x1   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = 2·x1   
POL(isPal(x1)) = 2·x1   
POL(isPalListKind(x1)) = x1   
POL(isQid(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(o) = 0   
POL(ok(x1)) = 2·x1   
POL(proper(x1)) = x1   
POL(tt) = 0   
POL(u) = 0   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
isPal(ok(X)) → ok(isPal(X))
isPalListKind(ok(X)) → ok(isPalListKind(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
U72(mark(X)) → mark(U72(X))
U72(ok(X)) → ok(U72(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U62(mark(X)) → mark(U62(X))
U62(ok(X)) → ok(U62(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U53(mark(X)) → mark(U53(X))
U53(ok(X)) → ok(U53(X))
U52(mark(X1), X2) → mark(U52(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U43(mark(X)) → mark(U43(X))
U43(ok(X)) → ok(U43(X))
U42(mark(X1), X2) → mark(U42(X1, X2))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
isQid(ok(X)) → ok(isQid(X))
U32(mark(X)) → mark(U32(X))
U32(ok(X)) → ok(U32(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U23(mark(X)) → mark(U23(X))
U23(ok(X)) → ok(U23(X))
isList(ok(X)) → ok(isList(X))
U22(mark(X1), X2) → mark(U22(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
isNeList(ok(X)) → ok(isNeList(X))
U12(mark(X)) → mark(U12(X))
U12(ok(X)) → ok(U12(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.

TOP(ok(X)) → TOP(active(X))
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
mark(x1)  =  mark(x1)
proper(x1)  =  x1
ok(x1)  =  x1
active(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U62(x1)  =  U62(x1)
U61(x1, x2)  =  U61(x1, x2)
U53(x1)  =  U53(x1)
U52(x1, x2)  =  U52(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U43(x1)  =  U43(x1)
U42(x1, x2)  =  U42(x1, x2)
and(x1, x2)  =  and(x1, x2)
U72(x1)  =  U72(x1)
__(x1, x2)  =  __(x1, x2)
isQid(x1)  =  x1
o  =  o
tt  =  tt
u  =  u
e  =  e
i  =  i
isPalListKind(x1)  =  x1
a  =  a
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31(x1, x2)
U21(x1, x2, x3)  =  U21(x1, x2, x3)
U22(x1, x2)  =  U22(x1, x2)
U11(x1, x2)  =  U11(x1, x2)
U12(x1)  =  U12(x1)
isPal(x1)  =  isPal(x1)
isNePal(x1)  =  isNePal(x1)
nil  =  nil
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)

Recursive path order with status [2].
Quasi-Precedence:
TOP1 > [mark1, U431, U231]
[2, isPal1] > [U712, isNePal1] > U612 > U621 > [mark1, U431, U231]
[2, isPal1] > [U712, isNePal1] > and2 > [mark1, U431, U231]
[2, isPal1] > [U712, isNePal1] > U721 > [mark1, U431, U231]
[2, isPal1] > U513 > U522 > U531 > [mark1, U431, U231]
[2, isPal1] > U513 > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
[2, isPal1] > U513 > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
[2, isPal1] > tt > U621 > [mark1, U431, U231]
[2, isPal1] > tt > U522 > U531 > [mark1, U431, U231]
[2, isPal1] > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
[2, isPal1] > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
[2, isPal1] > tt > U721 > [mark1, U431, U231]
[2, isPal1] > U213 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
[2, isPal1] > U213 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
o > tt > U621 > [mark1, U431, U231]
o > tt > U522 > U531 > [mark1, U431, U231]
o > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
o > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
o > tt > U721 > [mark1, U431, U231]
u > tt > U621 > [mark1, U431, U231]
u > tt > U522 > U531 > [mark1, U431, U231]
u > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
u > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
u > tt > U721 > [mark1, U431, U231]
e > tt > U621 > [mark1, U431, U231]
e > tt > U522 > U531 > [mark1, U431, U231]
e > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
e > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
e > tt > U721 > [mark1, U431, U231]
i > tt > U621 > [mark1, U431, U231]
i > tt > U522 > U531 > [mark1, U431, U231]
i > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
i > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
i > tt > U721 > [mark1, U431, U231]
a > tt > U621 > [mark1, U431, U231]
a > tt > U522 > U531 > [mark1, U431, U231]
a > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
a > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
a > tt > U721 > [mark1, U431, U231]
nil > tt > U621 > [mark1, U431, U231]
nil > tt > U522 > U531 > [mark1, U431, U231]
nil > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > [U321, U312] > [mark1, U431, U231]
nil > tt > U522 > [U413, U222, isList1] > [U422, U112, isNeList1] > U121 > [mark1, U431, U231]
nil > tt > U721 > [mark1, U431, U231]

Status:
i: multiset
U522: [1,2]
_2: [1,2]
U413: multiset
mark1: [1]
and2: multiset
U712: [2,1]
U231: [1]
tt: multiset
U721: multiset
U121: multiset
TOP1: [1]
U213: [1,2,3]
U513: multiset
nil: multiset
a: multiset
U312: [2,1]
isList1: multiset
U222: multiset
U422: [2,1]
e: multiset
isNePal1: [1]
U112: [2,1]
o: multiset
U431: [1]
U621: [1]
isPal1: [1]
U531: [1]
U612: multiset
u: multiset
isNeList1: [1]
U321: [1]


The following usable rules [17] were oriented:

active(U71(X1, X2)) → U71(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U52(X1, X2)) → U52(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U43(X)) → U43(active(X))
active(U42(X1, X2)) → U42(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(U72(X)) → U72(active(X))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
proper(u) → ok(u)
proper(o) → ok(o)
proper(i) → ok(i)
proper(e) → ok(e)
proper(a) → ok(a)
proper(isPal(X)) → isPal(proper(X))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNePal(X)) → isNePal(proper(X))
proper(U72(X)) → U72(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U53(ok(X)) → ok(U53(X))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U53(mark(X)) → mark(U53(X))
U62(ok(X)) → ok(U62(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U62(mark(X)) → mark(U62(X))
U72(ok(X)) → ok(U72(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
proper(nil) → ok(nil)
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U53(tt)) → mark(tt)
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(and(tt, X)) → mark(X)
active(U72(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U62(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U23(tt)) → mark(tt)
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U43(tt)) → mark(tt)
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U32(tt)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
U32(ok(X)) → ok(U32(X))
U32(mark(X)) → mark(U32(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U23(ok(X)) → ok(U23(X))
U23(mark(X)) → mark(U23(X))
U22(mark(X1), X2) → mark(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U43(mark(X)) → mark(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
isNeList(ok(X)) → ok(isNeList(X))
U12(mark(X)) → mark(U12(X))
U12(ok(X)) → ok(U12(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
isPal(ok(X)) → ok(isPal(X))
isPalListKind(ok(X)) → ok(isPalListKind(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
U72(mark(X)) → mark(U72(X))
U72(ok(X)) → ok(U72(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U62(mark(X)) → mark(U62(X))
U62(ok(X)) → ok(U62(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U53(mark(X)) → mark(U53(X))
U53(ok(X)) → ok(U53(X))
U52(mark(X1), X2) → mark(U52(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U43(mark(X)) → mark(U43(X))
U43(ok(X)) → ok(U43(X))
U42(mark(X1), X2) → mark(U42(X1, X2))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
isQid(ok(X)) → ok(isQid(X))
U32(mark(X)) → mark(U32(X))
U32(ok(X)) → ok(U32(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U23(mark(X)) → mark(U23(X))
U23(ok(X)) → ok(U23(X))
isList(ok(X)) → ok(isList(X))
U22(mark(X1), X2) → mark(U22(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
isNeList(ok(X)) → ok(isNeList(X))
U12(mark(X)) → mark(U12(X))
U12(ok(X)) → ok(U12(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(isList(nil)) → mark(tt)
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
Used ordering: POLO with Polynomial interpretation [25]:

POL(TOP(x1)) = 2·x1   
POL(U11(x1, x2)) = 2·x1 + x2   
POL(U12(x1)) = 2·x1   
POL(U21(x1, x2, x3)) = 2·x1 + 2·x2 + x3   
POL(U22(x1, x2)) = 2·x1 + x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1 + x2 + x3   
POL(U42(x1, x2)) = x1 + x2   
POL(U43(x1)) = 2·x1   
POL(U51(x1, x2, x3)) = x1 + x2 + 2·x3   
POL(U52(x1, x2)) = 2·x1 + 2·x2   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = x1 + x2   
POL(U62(x1)) = 2·x1   
POL(U71(x1, x2)) = 2·x1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = x1 + 2·x2   
POL(a) = 2   
POL(active(x1)) = 2·x1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 2   
POL(i) = 2   
POL(isList(x1)) = 2·x1   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = x1   
POL(isPal(x1)) = 2·x1   
POL(isPalListKind(x1)) = x1   
POL(isQid(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(o) = 2   
POL(ok(x1)) = 2·x1   
POL(tt) = 0   
POL(u) = 2   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ UsableRulesReductionPairsProof
QDP
                        ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
U72(mark(X)) → mark(U72(X))
U72(ok(X)) → ok(U72(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U62(mark(X)) → mark(U62(X))
U62(ok(X)) → ok(U62(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U53(mark(X)) → mark(U53(X))
U53(ok(X)) → ok(U53(X))
U52(mark(X1), X2) → mark(U52(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U43(mark(X)) → mark(U43(X))
U43(ok(X)) → ok(U43(X))
U42(mark(X1), X2) → mark(U42(X1, X2))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U32(mark(X)) → mark(U32(X))
U32(ok(X)) → ok(U32(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U23(mark(X)) → mark(U23(X))
U23(ok(X)) → ok(U23(X))
U22(mark(X1), X2) → mark(U22(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U12(mark(X)) → mark(U12(X))
U12(ok(X)) → ok(U12(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isQid(ok(X)) → ok(isQid(X))
isPal(ok(X)) → ok(isPal(X))
isNePal(ok(X)) → ok(isNePal(X))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

TOP(ok(X)) → TOP(active(X))

Strictly oriented rules of the TRS R:

active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(U23(X)) → U23(active(X))
active(U52(X1, X2)) → U52(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U72(X)) → U72(active(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
U72(ok(X)) → ok(U72(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U62(ok(X)) → ok(U62(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U53(ok(X)) → ok(U53(X))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U43(ok(X)) → ok(U43(X))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U32(ok(X)) → ok(U32(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U23(ok(X)) → ok(U23(X))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U12(ok(X)) → ok(U12(X))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
isQid(ok(X)) → ok(isQid(X))
isPal(ok(X)) → ok(isPal(X))
isNePal(ok(X)) → ok(isNePal(X))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))

Used ordering: POLO with Polynomial interpretation [25]:

POL(TOP(x1)) = 2·x1   
POL(U11(x1, x2)) = 2·x1 + 2·x2   
POL(U12(x1)) = 2·x1   
POL(U21(x1, x2, x3)) = x1 + x2 + x3   
POL(U22(x1, x2)) = x1 + 2·x2   
POL(U23(x1)) = 1 + 2·x1   
POL(U31(x1, x2)) = x1 + 2·x2   
POL(U32(x1)) = 2·x1   
POL(U41(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(U42(x1, x2)) = x1 + 2·x2   
POL(U43(x1)) = 2·x1   
POL(U51(x1, x2, x3)) = 2·x1 + 2·x2 + x3   
POL(U52(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U53(x1)) = 2·x1   
POL(U61(x1, x2)) = 2·x1 + 2·x2   
POL(U62(x1)) = 1 + 2·x1   
POL(U71(x1, x2)) = x1 + 2·x2   
POL(U72(x1)) = 1 + 2·x1   
POL(__(x1, x2)) = 2·x1 + 2·x2   
POL(active(x1)) = 2·x1   
POL(and(x1, x2)) = 2·x1 + 2·x2   
POL(isList(x1)) = 2·x1   
POL(isNeList(x1)) = 2·x1   
POL(isNePal(x1)) = 2·x1   
POL(isPal(x1)) = 2·x1   
POL(isPalListKind(x1)) = x1   
POL(isQid(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(ok(x1)) = 2 + 2·x1   
POL(tt) = 1   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ UsableRulesReductionPairsProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
U72(mark(X)) → mark(U72(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U62(mark(X)) → mark(U62(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U53(mark(X)) → mark(U53(X))
U52(mark(X1), X2) → mark(U52(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U43(mark(X)) → mark(U43(X))
U42(mark(X1), X2) → mark(U42(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U32(mark(X)) → mark(U32(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U23(mark(X)) → mark(U23(X))
U22(mark(X1), X2) → mark(U22(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U12(mark(X)) → mark(U12(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.